258 research outputs found

    CTA and cosmic-ray diffusion in molecular clouds

    Full text link
    Molecular clouds act as primary targets for cosmic-ray interactions and are expected to shine in gamma-rays as a by-product of these interactions. Indeed several detected gamma-ray sources both in HE and VHE gamma-rays (HE: 100 MeV < E 100 GeV) have been directly or indirectly associated with molecular clouds. Information on the local diffusion coefficient and the local cosmic-ray population can be deduced from the observed gamma-ray signals. In this work we concentrate on the capability of the forthcoming Cherenkov Telescope Array Observatory (CTA) to provide such measurements. We investigate the expected emission from clouds hosting an accelerator, exploring the parameter space for different modes of acceleration, age of the source, cloud density profile, and cosmic ray diffusion coefficient. We present some of the most interesting cases for CTA regarding this science topic. The simulated gamma-ray fluxes depend strongly on the input parameters. In some cases, from CTA data it will be possible to constrain both the properties of the accelerator and the propagation mode of cosmic rays in the cloud.Comment: In Proceedings of the 2012 Heidelberg Symposium on High Energy Gamma-Ray Astronomy. All CTA contributions at arXiv:1211.184

    H.E.S.S. observations of galaxy clusters

    Full text link
    Clusters of galaxies, the largest gravitationally bound objects in the universe, are expected to contain a significant population of hadronic and leptonic cosmic rays. Potential sources for these particles are merger and accretion shocks, starburst driven galactic winds and radio galaxies. Furthermore, since galaxy clusters confine cosmic ray protons up to energies of at least 1 PeV for a time longer than the Hubble time they act as storehouses and accumulate all the hadronic particles which are accelerated within them. Consequently clusters of galaxies are potential sources of VHE (> 100 GeV) gamma rays. Motivated by these considerations, promising galaxy clusters are observed with the H.E.S.S. experiment as part of an ongoing campaign. Here, upper limits for the VHE gamma ray emission for the Abell 496 and Coma cluster systems are reported.Comment: Contribution to the 30th ICRC, Merida Mexico, July 200

    Gamma-ray signatures of cosmic ray acceleration, propagation, and confinement in the era of CTA

    Full text link
    Galactic cosmic rays are commonly believed to be accelerated at supernova remnants via diffusive shock acceleration. Despite the popularity of this idea, a conclusive proof for its validity is still missing. Gamma-ray astronomy provides us with a powerful tool to tackle this problem, because gamma rays are produced during cosmic ray interactions with the ambient gas. The detection of gamma rays from several supernova remnants is encouraging, but still does not constitute a proof of the scenario, the main problem being the difficulty in disentangling the hadronic and leptonic contributions to the emission. Once released by their sources, cosmic rays diffuse in the interstellar medium, and finally escape from the Galaxy. The diffuse gamma-ray emission from the Galactic disk, as well as the gamma-ray emission detected from a few galaxies is largely due to the interactions of cosmic rays in the interstellar medium. On much larger scales, cosmic rays are also expected to permeate the intracluster medium, since they can be confined and accumulated within clusters of galaxies for cosmological times. Thus, the detection of gamma rays from clusters of galaxies, or even upper limits on their emission, will allow us to constrain the cosmic ray output of the sources they contain, such as normal galaxies, AGNs, and cosmological shocks. In this paper, we describe the impact that the Cherenkov Telescope Array, a future ground-based facility for very-high energy gamma-ray astronomy, is expected to have in this field of research.Comment: accepted to Astroparticle Physics, special issue on Physics with the Cherenkov Telescope Arra

    Binaries with the eyes of CTA

    Full text link
    The binary systems that have been detected in gamma rays have proven very useful to study high-energy processes, in particular particle acceleration, emission and radiation reprocessing, and the dynamics of the underlying magnetized flows. Binary systems, either detected or potential gamma-ray emitters, can be grouped in different subclasses depending on the nature of the binary components or the origin of the particle acceleration: the interaction of the winds of either a pulsar and a massive star or two massive stars; accretion onto a compact object and jet formation; and interaction of a relativistic outflow with the external medium. We evaluate the potentialities of an instrument like the Cherenkov telescope array (CTA) to study the non-thermal physics of gamma-ray binaries, which requires the observation of high-energy phenomena at different time and spatial scales. We analyze the capability of CTA, under different configurations, to probe the spectral, temporal and spatial behavior of gamma-ray binaries in the context of the known or expected physics of these sources. CTA will be able to probe with high spectral, temporal and spatial resolution the physical processes behind the gamma-ray emission in binaries, significantly increasing as well the number of known sources. This will allow the derivation of information on the particle acceleration and emission sites qualitatively better than what is currently available.Comment: 23 pages, 13 figures, accepted for publication in Astroparticle Physics, special issue on Physics with the Cherenkov Telescope Arra

    Progress in Monte Carlo design and optimization of the Cherenkov Telescope Array

    Full text link
    The Cherenkov Telescope Array (CTA) will be an instrument covering a wide energy range in very-high-energy (VHE) gamma rays. CTA will include several types of telescopes, in order to optimize the performance over the whole energy range. Both large-scale Monte Carlo (MC) simulations of CTA super-sets (including many different possible CTA layouts as sub-sets) and smaller-scale simulations dedicated to individual aspects were carried out and are on-going. We summarize results of the prior round of large-scale simulations, show where the design has now evolved beyond the conservative assumptions of the prior round and present first results from the on-going new round of MC simulations.Comment: 4 pages, 5 figures. In Proceedings of the 33rd International Cosmic Ray Conference (ICRC2013), Rio de Janeiro (Brazil). All CTA contributions at arXiv:1307.223

    Prospects for Observations of Pulsars and Pulsar Wind Nebulae with CTA

    Full text link
    The last few years have seen a revolution in very-high gamma-ray astronomy (VHE; E>100 GeV) driven largely by a new generation of Cherenkov telescopes (namely the H.E.S.S. telescope array, the MAGIC and MAGIC-II large telescopes and the VERITAS telescope array). The Cherenkov Telescope Array (CTA) project foresees a factor of 5 to 10 improvement in sensitivity above 0.1 TeV, extending the accessible energy range to higher energies up to 100 TeV, in the Galactic cut-off regime, and down to a few tens GeV, covering the VHE photon spectrum with good energy and angular resolution. As a result of the fast development of the VHE field, the number of pulsar wind nebulae (PWNe) detected has increased from one PWN in the early '90s to more than two dozen firm candidates today. Also, the low energy threshold achieved and good sensitivity at TeV energies has resulted in the detection of pulsed emission from the Crab Pulsar (or its close environment) opening new and exiting expectations about the pulsed spectra of the high energy pulsars powering PWNe. Here we discuss the physics goals we aim to achieve with CTA on pulsar and PWNe physics evaluating the response of the instrument for different configurations.Comment: accepted for publication in Astroparticle Physic
    • …
    corecore